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Abstract

This study examines how ecosystem degradation and substitution of natural inputs
result in private and social costs. I leverage variation from the sudden emergence of
a wildlife disease in the United States that caused large mortality shocks to bats, a
natural predator of insects. Exploiting the staggered expansion of the wildlife disease,
I find that farmers increased their insecticide use, experienced a drop in crop revenues,
and that the counties that experienced the bat die-offs saw increases in human infant
mortality. The findings demonstrate that disruptions to ecological systems can have
substantial impacts on economic activities and human health.
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1 Introduction

Economists and ecologists theorize that the well-documented reduction in the abundance
and diversity of animals and plants (Cardinale et al. 2012;  Dirzo et al. 2014;  Ceballos
et al. 2015; Diaz et al. 2019; Cardoso et al. 2020; Paul et al. 2020) will result in large
social costs (Weitzman 1992; Nehring and Puppe 2002; Brock and Xepapadeas 2003;

Diaz et al. 2019; Dasgupta 2021; Paul et al. 2020). Despite growing interest in assessing
the economic impacts of ecosystem degradation it remains an understudied empirical area
(Heal 2000; Fenichel and Abbott 2014; Ferraro et al. 2019), with current knowledge largely
not informed by quasi-experimental evidence (Costanza et al. 1997; Polasky et al. 2019).
Improving our understanding on this topic is important because substituting environmental
inputs as they decline is central to the concept of sustainability in economics (Arrow and
Fisher 1974; Dasgupta and Heal 1974; Stiglitz 1974; Solow 1993). The knowledge gap
about how changes in biological features of the environment affect human well-being is even
more striking when contrasted with the large body of work that studies the willingness-
to-pay (WTP) for non-biological features of the environment such as lower pollution levels
(Chay and Greenstone 2003; Currie and Walker 2011; Ebenstein 2012; Zivin and Neidell
2012; Schlenker and Walker 2015; Currie et al. 2015; Ebenstein et al. 2017; Deryugina
et al. 2019; Keiser and Shapiro 2019; Marcus 2020), or stable weather conditions (Schlenker
et al. 2006; Deschénes and Greenstone 2007; Deschénes et al. 2009; Schlenker and Roberts
2009; Dell et al. 2014; Costinot et al. 2016; Fujiwara et al. 2016; Hsiang et al. 2017;

Proctor et al. 2018; Corno et al. 2020).

Valuations of ecosystems have mostly relied on survey data to elicit monetary values
for the preservation of species, costs of off-the-shelf substitutes in back of the envelope
calculations, or using revealed preferences in observational, non-experimental settings (Daily
et al. 2000; Heal 2000). See Hanemann (1994) and Carson (2012) for excellent reviews on the
use of those methods and their findings. The lack of identifying variation makes valuation
studies hard to interpret, even in terms of orders of magnitude. In one highly controversial
example, Costanza et al. (1997) valued global ecosystems and natural capital at nearly twice
the output of the global economy, criticized as an “Audacious bid to value the planet” (1998).
The value people place on stable ecosystems is an open, and important, empirical question.

The primary goal of this paper is to test whether disruptions to the functioning of ecosys-
tems have an effect on economic activity, and human well-being. I provide large-scale evi-
dence on the costs of declining wildlife populations in the context of agricultural pests and

their natural enemies. Specifically, I study the role that insectivorous bats play in the pro-



vision of biological pest control.! In the absence of pest control by bats, farmers might face
crop losses unless they use insecticides as a substitute (Boyles et al. 2011; Kunz et al. 2011).
While these defensive expenditures might be privately optimal, they might not be socially op-
timal because agrochemicals, of which insecticides are a subset, have been linked to negative
health effects (Brainerd and Menon 2014; Lai 2017; Taylor 2021; Dias et al. 2020).

I use plausibly exogenous variation in biological pest control in the form of mortality
shocks to bats caused by an invasive fungus species, which has spread to 36 states in the
U.S. Exploiting the staggered expansion of the wildlife disease from 2006, I use a difference-in-
differences (DD) strategy and find that farmers compensate and increase their insecticide use
by 34.5%. While farmers are able to maintain production quantities close to baseline levels, I
estimate that crop revenues drop by over 26.7%, potentially due to insect damages that lower
crop quality. Following the substitution towards insecticides, which are toxic compounds by
design and can be transported by air and water off the target field, I document an increase
in human infant mortality rate of 5%.

These findings provide causally interpretable estimates regarding defensive expenditures
following the degradation of a key ecosystem function, namely biological pest control. The
key contribution I make in this paper is to document the substitution of a declining natural
input: compensating with insecticides for the reduction in bat populations that provide
biological pest control. While the existence of this substitution has long been theorized,
well-identified empirical validation had not thus far been established, to the best of my
knowledge (Frank and Schlenker 2016; THsiang et al. 2019). Fungal diseases as a direct
shock to crop productivity have been studied in the past (O'Rourke 1994; Schlarbaum et
al. 1997; Banerjee et al. 2010), but I demonstrate here that even when the invasive fungus
does not directly target crops, it can have large effects on environmental conditions through
an ecological interaction channel.

The quasi-experimental shock to biological pest control and insecticide use allows me to
make a second contribution to the literature on the effects of chemical pollution on human
health. Existing research documents negative health impacts of air and water pollution
from industrial activity (Chay and Greenstone 2003; Currie and Walker 2011; Ebenstein
2012; Schlenker and Walker 2015; Ebenstein et al. 2017; Deryugina et al. 2019; Marcus
2020). However, there is less work that leverages quasi-experimental variation to estimate
the health effects of pollution from agricultural production. Notable exceptions are several
papers that find negative health effects from agrochemicals using variation in growing seasons

and fertilizer use in India (Brainerd and Menon 2014), changes to agricultural policy in China

! The term “biological control” is mostly used to describe interactions between natural enemies where one
organism preys, parasites, or causes disease in, another organism (Sawyer 1990).



(Lai 2017), being downstream from an increase in herbicide-tolerant crop adoption in Brazil
(Dias et al. 2020), the spread of an invasive fruit pest in the U.S. (Jones 2020), or increased
insecticide use that follows cicada cycles in the U.S. (Taylor 2021). The line of work that
examines the causal impacts of agrochemicals on health builds on a broad literature that
associates pesticide exposure with negative health outcomes (Garry et al. 2002; Regidor
et al. 2004; Winchester et al. 2009; Larsen et al. 2017).

I use the empirical estimates along with data on chemical expenditures, and the value
of mortality risk reduction to arrive at a total welfare loss of $31.85 billion in the affected
counties from 2006 to 2017 ($1,545 per-capita), and $24.3 billion when excluding the infant
health damages ($1,1176 per-capita). Combined, these findings reflect both private costs
to farmers, as well as social costs to the neighboring populations through the channel of
short-term infant health.

In what follows, I review the detection and expansion of White Nose Syndrome in the
U.S.; describe the data and I how use it in the DD research design; present the main findings;

followed by a set of tests for potential threats to identification along with robustness checks.

2 Emergence of White Nose Syndrome

White Nose Syndrome (WNS) is an infectious wildlife disease that develops in certain bat
species as a result of exposure to an invasive cold-loving fungus species. The disease receives
its name because the fungus grows around the nose of the bat and creates a cluster of white
flakes (Turner et al. 2011). The infection of bats and growth of the fungus benefit from the
environmental conditions found in the caves that bats use during the day and throughout
winter. Specifically, temperatures below 16 degrees Celsius as the fungus has an upper
temperature limit of 20 degrees Celsius (Verant et al. 2012), and is extremely sensitive to
ultraviolet light (Palmer et al. 2018).

The earliest evidence of WNS in the U.S. dates back to February 2006 from photos taken
at Howes Cave outside of Albany, New York (Blchert et al. 2009). The effects of WNS were
first detected during a routine bat survey in March 2007 in the same cave outside of Albany.
Instead of finding a healthy bat colony the surveyors found a large number of dead bats on
the floor of the cave (Kolbert 2014). Using DNA sequencing of the fungus, researchers have
determined the fungus originated from the European continent, and the current scientific
consensus regarding its introduction to the U.S. is that it was brought over as spores on the
shoes or backpacks of hikers (Frick et al. 2010; Drees et al. 2017).

Several bat species that get infected with the fungus experience high mortality rates. The

fungus spreads throughout the skin of the bat, essentially consuming the top layers of skin



tissue. The most common symptoms are premature awakening during hibernation (Reeder
et al. 2012;  Fenton 2012), damages to the wings’ membrane (Reichard and Kunz 2009;
Cryan et al. 2010), and evaporative water loss (Willis et al. 2011). Bats that wake up during
the winter, when they are supposed to still be hibernating, face an almost non-existent food
supply, and an increased caloric use rate due to the low temperatures. They generally do not
survive the winter (Thomas et al. 1990; Blehert et al. 2009). By 2010, mortality rates were
between 30% and 99%, with a mean of 73% (Frick et al. 2010), and by 2012 the mortality
estimate was at least 5.7 million bats (Froschauer and Coleman 2012). However, not all bat
species are adversely affected by the fungus, meaning that they do not develop WNS even
if they serve as hosts for the fungus. Consequently, there are counties where the fungus is
present, but the biological pest control by bats is not disrupted by WNS.

In Figure 1, I plot the gradual expansion of WNS across the U.S., and highlight the states
and counties that are included in the main estimation sample. The pattern of county conta-
gion seems to follow the migration path of bats as well as hiking trails along the Appalachian.
As seen in Figure 1, there are counties that are further south and west that appear to have
been exposed to WNS around the same time as counties closer to the northeast. This sug-
gests that the spores of the fungus were transported to those counties by people, not bats,
and it appears that a radial dispersion pattern emerged around these new epicenters. The
expansion of WNS contagion remains a complex function of environmental conditions, host
genetics, and behavioral responses of both bats and people (Maher et al. 2012; Wilder et
al. 2015), making it hard for ecologists to predict which counties will contract the fungus.
Because the fungus can survive as spores even without an available bat host, an exposed

county remains in exposed status.

3 Data

In the main analysis, I use county-level data from 1997 to 2017 on pesticide use, crop sales,
expenditures on agrochemicals, infant health outcomes, and the expansion of WNS. I report
summary statistics for the main variables in Table A1, and summarize the secular trends of
the main outcomes in Figure Al.

In order to classify the counties that experienced a negative shock to the provision of
biological pest control, I use WNS detection data from the Fish and Wildlife Service (FWS)
across U.S. counties. Each county is classified as either confirmed, suspected, or not-detected.
Because previous research has documented delays in detecting WNS in counties (Verant
et al. 2018), and as I demonstrate in the Appendix, those delays average at two years, I

uniformly assign WNS treatment onset two years before the formal FWS classification.



The main prediction regarding the defensive expenditures by farmers is that insecticides
will be used to substitute for biological pest control. I use the data from the U.S. Geolog-
ical Survey (USGS) on estimated agricultural pesticide use, by chemical compound, at the
county-year level (Baker and Stone 2013; 2015). Using data from the Environmental Pro-
tection Agency (EPA), and several other sources, I classify and aggregate the 528 different
chemical compounds to three aggregated pesticide use classes: insecticides, fungicides, and
herbicides. In order to compare the used amounts between counties of different sizes and
different scales of agricultural activity, I normalize each variable by the total county area.

To examine the net effects on agricultural productivity, I use data on the total crop sales
value and chemical expenditures, which are reported in the agricultural census, conducted
in 5 year intervals. I use the data for the census years of 1997, 2002, 2007, 2012, and 2017.
Unfortunately, a balanced panel of crop yield data for the majority of crops are only available
for a subset of counties. This limits my ability to estimate the direct damages to agricultural
productivity (see the Appendix for additional details).

In order to test for the potential negative health impacts due to insecticide applications, I
use restricted-access data on linked birth and death certificates from the National Center for
Health Statistics. Following previous work that uses this source of data, I construct infant
mortality rates (IMR) for all causes of death, as well as for internal and external causes
(Chay and Greenstone 2003; Sanders and Stoecker 2015). The main focus in the analysis is
on the internal IMR, which excludes deaths due to accidents and homicides. In addition, I
construct variables for the number of live births, mean birth weight, mean gestation length,

and share of births that classified as low birth weight or as premature births.

4 White Nose Syndrome as a Natural Experiment

The sudden and unexpected emergence of WNS provides a natural experiment that approx-
imates random assignment of counties to high or low bat population levels. As the fungus
expands its range each year, more counties phase into the treatment group. This allows me
to estimate the effect of declining bat populations on the outcomes of interest as a function
of time from exposure to WNS. Using a staggered difference-in-differences (DD) strategy,
I define the counties that are classified as WNS confirmed as the treatment group, and
non-WNS counties as the control group. WNS confirmed counties are those where both the
fungus and bats suffering from WNS have been detected. Counties where only the fungus
has been detected, but no bat species have developed WNS are classified as WNS suspected.
The treatment status of WNS suspected counties is ambiguous. Consequently, I exclude

the WNS suspected counties from the main analysis in order to compare only the WNS



confirmed to non-WNS counties.

The classification of WNS exposure most likely lags by two years relative to the first
signs of decline in bat populations. Recent research has documented this lag (Verant et
al. 2018), and I provide additional evidence for it in the Appendix (see Figures A3a and
A3b). As a result, I uniformly shift the exposure timing by two years earlier relative to
the official FWS year, which simply re-centers the event time around exposure. To allow
for enough post-treatment years for each WNS confirmed county, I focus on counties that
were classified by the FWS as WNS confirmed counties up to, and including, 2014, while
omitting counties exposed post-2015. Finally, I compare the WNS confirmed counties to
other non-WNS counties residing in states with WNS confirmed counties.

The main identifying assumption is that counties would have had their outcomes develop
similarly in the absence of WNS exposure. In addition to estimating pre-treatment trends,
I also verify that lagged values of the outcomes are not strong predictors of WNS exposure.
In the context of changing environmental conditions, another important assumption is that
neighboring counties are not affected by the exposure of a nearby county. However, because
bats can forage for insects in neighboring counties, and migrate between seasons, a sharp
decline in a bat population in one county can also affect its adjacent counties.? This potential
violation of the stable unit treatment value assumption (SUTVA) will negatively bias and
attenuate my estimates if those counties also increase their insecticide use. To address this
concern, | provide results that estimate the scope of spatial spillovers.

A key threat to the interpretation of the results as identifying the effects of a decline
in biological pest control, is that the fungus responsible for WNS might have other effects
not through the channel of bat mortality. This violation of the exclusion restriction is made
less plausible by two facts. First, the fungus requires cold and humid conditions, with
temperatures well below 20 degrees Celsius, as well as little exposure to ultraviolet light to
thrive (Palmer et al. 2018;  Verant et al. 2012). That makes the caves that serve as bat
hibernacula an ideal setting for it, but also reduces the likelihood of it surviving outside
of the caves, and having direct impacts on agriculture and health. In addition, the fungus
has been prevalent throughout the European continent for years, if not centuries (Leopardi
et al. 2015), where no direct link between the fungus, agriculture, and infant health has
been suggested. In the analysis, I am able to provide empirical evidence that helps support

the exclusion restriction. Specifically, I exploit the fact that some counties have bat species

2 Most bats fly between 20 to 30 km a night and are considered to have a maximum nightly flying radius
of up to 50 km (Williams et al. 1973; Troxell et al. 2019). In the Appendix, I demonstrate that the cen-
troid distance between only 6.7% of the second degree neighboring counties (adjacent to the adjacent
counties) have a distance below 50 km. This makes it unlikely that bats fly more than one county away
in a given night.



that act as hosts of the fungus, but those species do not develop the symptoms that lead to

massive die-offs.

4.1 Main Estimation Specifications

For the outcome of interest, y.s, in county c, state s, in period ¢, I estimate the post-treatment

effect of WNS exposure using the following DD specification:
Yest = BIWNSct + Xcte + >\c + 5st + Eest (1)

Where y.s is either insecticide use, crop revenue or chemical expenditures, normalized
by county-area; or the infant mortality rate due to internal causes of death.® The treatment
variable, W NS, is a dummy variable that is equal to 1 for county c for all periods ¢ following
WNS detection. The parameter of interest is 31, which captures the average effect of WNS
exposure.

I weight observations in order to avoid distortions to the estimated effects that could arise
from counties with either low agricultural activity, or low population sizes. Specifically, I use
three main sets of sample weights. First, population size, which I use across all outcomes to
allow the results to be easily compared to one another. Second, the amount of cropland area
prior to the emergence of WNS, as measured in the 2002 agricultural census. Weighting by
baseline cropland prevents counties with unstable input use rates to distort the magnitude
of the estimates. Third, I use the number of live births in order to reduce the sensitivity of
the infant health estimates to unstable rates.

I include county, A., and state-by-year, d;, fixed effects, controlling for any time-invariant
unobserved county characteristics, and for flexible time-trends at the state level, respectively.
A key source of local variation over time is weather, which agricultural input use is highly
responsive to. To control for local weather variation, I add to the parsimonious specification
a set of county-year control variables, X, which include weather variables for the April
through September growing period in the form of degree days in 5 degree bins, as well
as linear and squared terms for precipitation. When estimating infant mortality, I also
report results where I include population shares by age groups. Any remaining unobserved
heterogeneity is part of the error term, €., which I cluster at the county level.

I examine whether there are differential time trends between treatment and control coun-

ties before exposure by modifying the specification in Equation (1) to include leads and lags

31 focus on estimating a level effects for insecticide use because farmers’ decisions regarding insecticide
applications rely on whether the number of insects captured in a pheromone trap exceeds a certain sub-
jective threshold, which results in insecticide applications in discrete batches (Metcalf 1980; Bateman
2003)



for WNS exposure:

—2 >7
Yest = Z B'rluz + Z Brﬂz + Xcte + /\c + 5st + Ecst (2)
r<-—7 r=0

Where p, is a dummy variable receiving the value of 1 when the county is r years away
from exposure. The effects are all estimated relative to the omitted category of the year just
prior to exposure. I bottom code 7 years and above prior to exposure, and top code 8 years
and above from exposure.* If the identifying assumption holds, we should not expect to
observe changes in the outcomes of interest prior to WNS exposure. All remaining variables

are the same as in Equation (1).

5 The Effects of Declining Biological Pest Control

In this section, I report the main findings, in Table 1, of an average increase in insecticide
use of 34.5%, a decline in crop revenue of 26.7%, and an increase in infant mortality, due
to internal causes of death, of 5%. After I establish the main findings of the paper, I
review additional results for the validity of the exclusion restriction, the extent of spatial
spillovers, the quasi-randomness of WNS expansion, as well as robustness checks for potential
outliers and misspecification issues. In the Appendix, I report a set of diagnostic results and
alternative estimators addressing concerns regarding two-way-fixed-effects estimators and

differential timing of treatment.

5.1 Average Treatment Effects

The main results corroborate the theoretical prediction regarding the substitution pattern
following a decline in a natural input. On average, insecticide use increases by 2.59 kg per-
squared-km, reflecting an increase of 34.5% relative to the population-weighted mean (Table
1, Panel A, column 2). Insecticides should be the most responsive to a decline in biological
pest control as it offers the most direct substitution. However, other pesticide inputs can
respond differently, depending on how related they are to insecticide use. Agronomic lit-
erature has documented that insect damage opens more pathways for fungi to spread, and
weakens the defenses of the plant, in addition to insects dispersing fungal spores as they
move between plants (Fennell et al. 1975;  Kluth et al. 2002). In Tables A3-A4, T show

4When reporting the estimation results, I omit the bottom and top coded coefficients because they are not
directly interpretable.



that on average, fungicide use increases, albeit imprecisely, and that herbicide use declines
post-WNS exposure. The decline in herbicide use suggests substitution between pesticide
classes, either due to binding budget constraints or regulatory limits on pesticide use.’
Damages from crop pests could lower the quality of the agricultural output even when
overall production does not decrease substantially, resulting in lower prices paid to the farmer
and lower revenue. The revenue from the sales of all crop commodities falls, on average,
by $7,420 per-squared-km (column 4), and is only slightly offset by an average reduction

6

in chemical expenditure of $410 per-squared-km (column 6).° Documenting the effect of

environmental conditions on crop quality is challenging because we often lack detailed price
data on crop quality and the prices paid to the farmers. However, Dalhaus et al. (2020)
established that when apple quality declines due to extreme weather conditions, those quality
effects have a larger negative impact on farm revenue than the reduction in yield.

Even if farmers are responding optimally to any observed elevated levels of crop pests,
and are correctly targeting their fields, that does not guarantee that sprayed insecticides
remain on the field. In Figure A2, I demonstrate that insecticide detections in water samples
during the agricultural growing season increase by at least 100%. This sharp increase is in
agreement with previous work that documented water and wind erosion carrying pesticide
off the target field (Burkhard and Guth 1981; Riidel 1997; Arias-Estévez et al. 2008;
Winchester et al. 2009).

The erosion of insecticides from the field can adversely affect health through off-farm
exposure. I test for this potential health channel by using the infant mortality rate, due to
internal causes of death, which increases by 0.33 deaths per-1,000 live births, on average,
following WNS exposure (column 8). This reflects an increase of 5% relative to the mean,
population-weighted level of internal IMR. These findings are robust to different weights,
inclusion of weather and population share controls, and are not observed when estimating the
effect on infant deaths due to external causes of death such as accidents and homicides (see
Tables A5-AT7). I verify that the characteristics of mothers who gave birth before and after
WNS exposure do not change in WNS counties relative to non-WNS counties (summarized
in Figure A6).

The findings on infant mortality are well bounded by previous estimates on environmental
pollution and infant health. Combining the average increase of 34.5% in insecticide use, and

5% increase in internal IMR, suggests an elasticity of 0.15. Using the same source of data

5In the U.S., the number of pesticide applications, the amounts used, and the allowed pesticide residue
on food crops is subject to federal regulations by the Environmental Protection Agency, Department of
Agriculture, and Food and Drug Administration.

6 Unfortunately, to the best of my knowledge, there are no data on chemical expenditures by pesticide
class.
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for infant health, Chay and Greenstone (2003) estimate that a 1% decline in ambient air
pollution levels leads to a 0.3% decline in internal infant mortality. Focusing on agricultural
water pollution in India, Brainerd and Menon (2014) find that a 1% increase in agrochemicals
in the water leads to a 0.46% increase in infant mortality. In Table A8, I report small effects
on birth weight and gestation length, similar to previous papers that find these outcomes
do not necessarily deteriorate even when infant mortality increases (Chay and Greenstone
2003; Currie and Neidell 2005).

5.2 Heterogeneous Treatment Effects

The average increase in insecticide use is masking considerable heterogeneity between coun-
ties, specifically: their baseline use. The rationale for these heterogeneous treatment effects
is that farmers in counties that saw the largest declines in biological pest control are likely to
be those that will have a higher compensatory response. In addition, counties with low base-
line use levels also might have more slack with respect to regulatory constraints regarding
insecticide applications.

Because there is a data gap regarding the counties that directly benefit from the pest
control that bats provide, I use the amount of insecticide use prior to the emergence of
WNS as a proxy. In counties with high provision levels of biological pest control, we would
expect to see low levels of baseline use, and vice-versa. I calculate baseline use as the mean
insecticide use from 1997 to 2005, and define counties as high or low baseline insecticide use
as above or below the national median level. I estimate a single regression where I interact
the WNS exposure dummy variable with dummy variables for being either above or below
the median baseline level.

Counties that were below the median baseline insecticide use exhibit a stronger response
following the emergence of WNS. In Table 1, Panel B, I report the heterogeneous treatment
effects post-WNS exposure. Counties that were previously using low levels of insecticides
increase their use by 3.62 kg per-squared-km following WNS exposure, relative to 1.61 kg
per-squared-km in already high insecticide using counties (column 2). This pattern repeats
across all the main outcomes where the effect in the low baseline insecticide use counties is

larger by a factor of 2 to 4 than in the high baseline counties (columns 4, 6, and 8).

5.3 Dynamic Treatment Effects

To examine whether the treatment effects of WNS exposure are driven by existing pre-trends
in the outcomes of interest, I plot the event study results in Figure 2. I report three sets of

results. First, in the left-most column of the figure, I report the results with census region-by-
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year fixed effects, and weight the outcomes by either baseline cropland area in 2002 (except
for internal IMR), or the number of live births (for internal IMR). For the outcomes that
I can observe annually, insecticide use and internal IMR, there does not appear to be a
systematic difference between counties that become WNS confirmed to non-WNS counties,
however, following WNS exposure, the treated counties diverge from the untreated counties,
and the magnitude of the effects increases over time. For the results I can observe during
agricultural census years, I interact the census year with the WNS exposure dummy. Crop
revenue is not declining in WNS confirmed counties before 2007, but falls sharply in 2012,
and remains significantly lower in 2017. Chemical expenditure declines in 2012 and 2017,
but by an order of magnitude less than crop revenue.

These dynamic patterns persist when I more flexibly control for time trends by using
state-by-year fixed effects (the second column of figures), and as I use population weights
across all results (third column of figures). The main exception is that the dynamic pattern
for internal IMR is dampened as more of the treatment effect is absorbed by the state-by-year
fixed effects. This reflects similar difficulties with estimating dynamic responses in infant
health as documented in previous work studying the effects of air pollution exposure (Chay
and Greenstone 2003; Currie and Neidell 2005).

The dynamic response for internal IMR is larger, and more precisely estimated, when I
exclude the nearest neighbors to the WNS confirmed counties (see Figure A7). This suggests
that the internal IMR results are attenuated due to spatial spillovers, which I examine in

greater detail in the following section.

5.4 Evaluating Threats to Identification

An important concern is that the fungus could affect agriculture and health through channels
not related to bat mortality. I leverage a feature of the empirical setting where not all bat
species develop the conditions that lead to WNS, even if the fungus is detected in the county
they hibernate in. I do not find evidence for a fungus-presence effect that does not also involve
bat mortality from WNS. In Table 2, I re-estimate the post-WNS results when including the
WNS suspected counties in the sample (columns 1, 3, 5, and 7). I then estimate a separate
effect for the presence of the fungus in the absence of confirmed bats suffering from WNS
(columns 2, 4, 6, and 8), and fail to detect an effect in the WNS suspected counties. The
somewhat lower point estimates for the average post-WNS effects suggest that some of the
WNS suspected counties are also experiencing declines in biological pest control.

Counties that are adjacent to WNS confirmed counties potentially also experience some

degree of treatment. If these spillovers result in increased insecticide use then they will
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negatively bias, and attenuate the results. I perform two tests to evaluate the impacts of these
spillovers. First, I seek to estimate the magnitude of the spillovers themselves. I repeat the
main post-WNS estimation, only now I exclude the set of counties that ever become a WNS
confirmed county, and define the counties that are adjacent to at least one WNS confirmed
county as the set of treated counties. I also estimate the effect of having an increasing share of
adjacent counties becoming WNS counties. Specifically, I include two dummies, for the share
of surrounding WNS adjacent counties in the interval of 33-66%, and 66-100%, estimated
relative to the omitted category of 0-33%. The second test involves removing the potential
source of bias by excluding the counties that are potentially experiencing spillover effects,
causing a SUTVA violation. Specifically, I exclude the counties that are adjacent to WNS
confirmed counties, but never become classified as a WNS confirmed county themselves.

I estimate small, and imprecise spatial spillover effects. The signs of the effects in Table 3,
Panel A (columns 1, 3, 5, and 7) is in agreement with the signs of the effects in Table 1, but
the magnitudes are smaller. However, in Table 3, Panel B, when estimating the treatment
effects for the WNS confirmed counties but when excluding their adjacent counties, the
magnitude and precision of the estimates increase (column 1, 3, 5, and 7). The estimates
increase in size when the share of neighboring WNS confirmed counties increase (columns
2, 4, 6, and 8), but the effects are not statistically significant from one another. Finally, I
verify that clustering at the county level does not systematically underestimate the standard

errors by accounting for their potential spatial correlation (see Table A9).

5.5 Quasi-Randomness, Sensitivity to Sample Composition & Mis-

specification

I provide supporting evidence for the interpretation of the spread of WNS as being quasi-
random with respect to the outcomes of interest. In Table A10, I report precisely estimated
zeros for the effect of lagged values of the main outcomes on the probability of WNS presence,
while spatial proximity appears as the only strong predictor for WNS. To test if the results
are driven by outliers, I report jackknifing distributions in Figure A11, which are narrowly
centered around the estimates from the main sample. I use permutation inference to test
if the DD specification fails to account for important cross-sectional or temporal trends. I
re-estimate the post-WNS specification in Equation (1) for each new bootstrap sample, for
each outcome, and summarize the results in Figure A12. The estimated effects from the
non-bootstrap samples are all in the tails of the bootstrap distributions, resulting in exact

p-values well below 5%.
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6 Conclusions

In this paper, I demonstrate that farmers compensate for the reduction in biological pest
control, provided by bats, by using more insecticides. This validates theoretical predictions
in the economic literature regarding substitution patterns when natural inputs decline. The
reduction in biological pest control lowers crop revenue, as predicted by ecological theory and
by the agronomic literature. I estimate higher infant mortality rates following the increase
in pesticide use, consistent with associations made in the epidemiological literature.

Using the main estimates, I evaluate the magnitude of the welfare losses due to the decline
in bat populations in the following way. I start with the results on overall chemical expen-
diture, that show a total decline in expenditures despite the increased use of insecticides.
I multiply the mean land area of a county, times the number of treated county-year pairs,
times the mean reduction in chemical expenditure of $410 per-squared-km, which results in
a $1.47 billion lower total chemical expenditure. However, this reduced expenditure, likely
a result of shifting resources from herbicide to insecticide applications, also has an effect on
total revenue. I repeat the above calculation using the mean loss of $7,420 per-squared-km
in crop revenue, which results in total losses of $26.6 billion. To anchor these magnitudes,
consider that chemical expenditure and crop revenue across all of the U.S. in 2017 alone were
around $17 billion and $190 billion (2017 dollars), respectively. Finally, for the health im-
pacts, I multiply the total number of live births in the treated counties, after WNS exposure,
by the mean effect of 0.33 additional deaths per-1,000 live births, resulting in an increase of
821 infant deaths. Using the EPA’s recommended central mortality risk reduction value of
$9.24 million (2017 dollars), this reflects a welfare loss of $7.6 billion. Combining these esti-
mates results in a total net loss of $31.85 billion, or $2.7 billion per-year, during 2006-2017,
due to agricultural losses and damages to infant health.

The findings in this paper highlight two policy topics: conservation of bats, and moni-
toring agrochemical pollution levels. If the costs of conserving bat populations are low and
the damages from the pesticides used to substitute for their pest control are high, then it
is potentially efficient and welfare-improving to preserve bat populations. Increasing the ca-
pacity to monitor chemical pollutants would allow for more research on the health effects of
pesticide exposure. Currently, pesticides are regulated individually, meaning that the effects
of various permutations are not tested. As a result, we remain with observational data to

alert us regarding the effects of chemical mixtures.
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Figure 1: Expansion of White Nose Syndrome Across the United States
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Notes: Map shows the expansion of WNS over time, as classified by the Fish and Wildlife Service,
with the two first detections highlighted as the WNS epicenter. The solid black lines highlight
the states in the main estimation sample, based on having a county with a WNS status by the
end of 2014.
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Figure 2: Dynamic Effects of WNS Exposure
State-by-Year FEs
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Notes: (a-f) Estimated coefficients and 95% Cls from the specification in Equation (2). Top and
bottom coded event-time coefficients are not reported. (g-1) Estimated coefficients and 95% Cls
from interacting a year dummy with the WNS exposure dummy in Equation (1). In the first
column of results, each regression includes county and census region-by-year fixed effects, and
observations are weighted by cropland acres in 2002, except for internal IMR, which is weighted by
live births. Results in the second column use state-by-year fixed effects, with the same weighting
scheme as in the first column. In the third column, all regressions are population-weighted.
Standard errors are clustered at the county level.
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Table 1

Average & Heterogeneous Treatment Effects Post-WNS Exposure

Insecticide Crop Chemical Internal
Use Revenue Expenditure IMR
Panel A. Average Treatment Effects
o 2 & @ 6 6 (1) ©
WNS 224 259 -825 -742 -0.72 -0.41 048 0.33
(0.49) (0.66) (1.08) (2.15) (0.09) (0.13) (0.20) (0.11)
R? 0.53 058 093 091 092 090 0.15 0.33
Panel B. Heterogeneous Treatment Effects
o @ B @ 6 © @O @
WNSxLow Baseline 3.80 3.62 -12.02 -13.11 -1.03 -0.77 0.50  0.42
(0.46) (0.53) (1.03) (2.45) (0.09) (0.15) (0.28) (0.14)
WNSxHigh Baseline 0.03 1.61 -3.32 -2.15 -0.34 -0.08 044 0.24
(0.68) (0.97) (1.64) (2.38) (0.12) (0.14) (0.21) (0.12)
R? 0.53 058 093 092 092 091 0.15 0.33
County FEs X X X X X X X X
State-Year FEs X X X X X X X X
Weighted E P E P E P E P
Dep. Var. Mean 9.28 7.50 28.73 27.53 245 1.81 6.77 6.56
N 33,474 33,474 7,350 7,350 7,590 7,590 33,474 33,474
Clusters 1,594 1,594 1470 1,470 1,518 1,518 1,594 1,594

Notes: Estimation results for the specification in Equation (1). Observations are weighted equally
(E), or by the total population in the county-year observation (P), using estimated population sizes
as reported by the Census Bureau. The reported mean for the dependent variable is the weighted
mean. Insecticide use, crop revenue, and chemical expenditure are normalized by county area, and
are measured in either kg-km™ (insecticide use), or thousands of dollars per-km2 (revenue and
expenditure). Internal infant mortality rate (IMR) is meausred in deaths per-1,000 live births.
Panel A reports average post-WNS exposure effects. Panel B interacts the WNS exposure dummy
with a dummy for being below or above the median insecticide use in the pre-exposure period of
1997-2005, which acts as a proxy for higher baseline levels of biological pest control. Standard
errors are clustered at the county level.
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Table 2
Falsification Test Using WNS Confirmed & Suspected Counties DD Estimates

Insecticide Crop Chemical Internal
Use Revenue Expenditure IMR

o @ 6 @ 6 © (M ©
WNS Confirmed 1.69 220 -554 -6.37 -0.33 -0.38 0.23 0.24
(0.58) (0.58) (1.68) (1.84) (0.10) (0.11) (0.09) (0.10)

WNS Suspected -2.41 3.43 0.22 -0.06
(0.65) (1.58) (0.16) (0.14)
R? 0.58 058 092 092 090 090 033 0.33
County FEs X X X X X X X X
State-Year FEs X X X X X X X X
Weighted P P P P P P P P
Dep. Var. Mean 7.46  7.46 27.04 27.04 177 177 6.46 6.46
N 36,666 36,666 8,050 8,050 8,290 8,290 36,666 36,666
Clusters 1,746 1,746 1,610 1,610 1,658 1,658 1,746 1,746

Notes: Estimation results for the specification similar to that in Equation (1). The sample
now also includes counties that are only WNS suspected, where the fungus has been detected
but there have not been sufficient detections of bats developing symptoms to classify the
county as WNS confirmed. Insecticide use, crop revenue, and chemical expenditure are nor-
malized by county area, and are measured in either kg-km? (insecticide use), or thousands of
dollars per-km™? (revenue and expenditure). Internal infant mortality rate (IMR) is meausred
in deaths per-1,000 live births. Observations are population-weighted. The reported mean
for the dependent variable is the weighted mean. Standard errors are clustered at the county
level.
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Table 3
Evaluating the Scope of Attenutation From Spatial Spillovers

Insecticide Crop Chemical Internal
Use Revenue Expenditure IMR

Panel A. Effects on Adjacent Counties When Excluding WNS Counties
o @ & @ O (6) M 8

WNSM 0.29 -1.24 -0.09 0.27
(1.35) (1.89) (0.14) (0.11)
Surr. WNS [33%,66%) 0.40 -3.29 -0.05 0.11
(1.11) (2.23) (0.15) (0.17)
Surr. WNS [66%,100%] 1.01 -13.62 -0.06 0.09
(2.49) (5.96) (0.44) (0.32)
R? 059 059 092 092 090 090 034 034
Dep. Var. Mean 816 816 2951 2951 1.98 1.98  6.64 6.64
N 28,320 28329 6,205 6,205 6,440 6,440 28,329 28329
Clusters 1,349 1,349 1241 1241 1288 1288 1,349 1,349

Panel B. Excluding Counties Adjacent to WNS Counties

o @ B @ 6 () (7) (8

WNS 3.52 -8.53 -0.50 0.63
(1.18) (2.37) (0.16) (0.14)
Surr. WNS [33%,66%) 2.00 -8.67 -0.56 0.41
(0.76) (2.77) (0.17) (0.14)
Surr. WNS [66%,100%] 2.04 -10.13 -0.62 0.57
(0.94) (2.98) (0.19) (0.26)
R? 0.57 057 091 091 091 0.91 0.34 0.34
Dep. Var. Mean 7.88  7.88 27.39 27.39 1.88 1.88 6.76  6.76
N 24,885 24,885 5,430 5,430 5,640 5,640 24,885 24,885
Clusters 1,185 1,185 1,086 1,086 1,128 1,128 1,185 1,185
County FEs X X X X X X X X
State-Year FEs X X X X X X X X
Weighted P P P P P P P P

Notes: Estimation results for the specification similar to that in Equation (1). In Panel A I exclude the
WNS confirmed counties, and define the non-WNS counties that share a border with the WNS counties,
as the treated group. In Panel B, I include the WNS-confirmed counties excluded in Panel A, but exclude
the non-WNS counties that share a border with the WNS confirmed counties. I estimate both an average
effect for a county being adjacent to a WNS county (Panel A), or the county being classified as a WNS
county (Panel B), as well as treatment intensity effects where larger shares of neigboring counties get
classified as WNS counties. All observations are population-weighted. Standard errors are clustered at
the county level. 25



Online Appendix

A Additional Results

A.1 Secular Trends in Main Outcomes

In addition to the summary statistics reported in Table A1, I provide visual summaries for
the variation over time in the four main outcome variables in Figure Al. In Figure Ala,
I plot the mean pesticide amount used across all counties each year, by pesticide class,
scaled to 1997. With the greater availability and adoption of genetically modified herbicide-
resistant crop seeds, the use of herbicides has gone up. Conversely, new genetically modified
seed varieties include insecticide and fungicide properties, lowering the use of those pesticide
classes. Figure Alb shows growth in overall crop revenues in real terms since 1997, albeit a
lower amount in 2017 relative to 2012. Similarly, chemical expenditure (Figure Alc) has also
gone up, and was much higher in 2017 and 2012, relative to previous years. Infant mortality
rates have been declining from a level of 7.7 deaths per-1,000 live births in 1997, to 6.6 deaths
per-1,000 live births in 2017. However, as Figure Ald shows, there is considerable variation
between states. Table A1l reports summary statistics for the main outcomes and additional

variables used in the analysis.

A.2 Evidence on Potential Exposure Channels

There is limited data on the concentration of pesticides in water and air, even though research
has shown that both wind and surface runoff erode pesticide from target fields, potentially
generating off-farm exposure. Here I use data from the USGS, for the period of 1997 to 2017,
on detections of different compounds in water samples. I focus on the insecticide compounds
that reflect at least 2% and above of overall detections.”

Because stations enter and exit the sample frequently, I cannot construct a representa-
tive balacned set of monitoring stations to test if concentrations increase following WNS
exposure. However, as the simple descriptive summary in Figure A2 shows, the number of
insecticide detections in water samples starts to increase in April, remains high throughout
May to August, and starts to decline in September. This is consistent with the timing of
the main agricultural growing season of April through September, and demonstrates that
insecticide applications make their way into waterways. The descriptive results in Figure

A2 are only suggestive of there being an exposure pathway through drinking water, yet they

" Results are fairly insensitive to the choice of this cutoff.
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serve as important evidence of there being elevated levels of insecticides during the pesticide

application season.

A.3 Evaluating Potential Earlier WNS Exposure

In order to correctly estimate the impacts of declining biological pest control both the status
and timing of its change need to be precisely measured. Because the U.S. Fish and Wildlife
Service coordinates survey efforts between state and federal agencies under the White Nose
Syndrome Response Team, there is a lower risk of failing to detect a county with WNS. Efforts
to detect include surveys in caves and mines, where bats hibernate, as well as randomly
testing subsets of bats that are collected for rabies testing (Griggs et al. 2012). Another
potential concern is with the measurement accuracy of treatment onset. In order for a
county to be classified as WNS confirmed, several bat samples need to be tested positive for
the fungus in order to not mistakenly classify a county due to an infected bat flying over
from another county.

As recent research has documented, classification of WNS status lags by at least one year
following the appearance of symptoms (Verant et al. 2018). In the case of counties that
transitioned from a WNS suspected to confirmed status, the average lag is two years (see
Figure A3a). In fact, most counties report cases of dead bats due to WNS a year before their
formal classification (see Figure A3b). This means that WNS could be having an effect well
before the formal WNS determination by the FWS.

To account for the potential lag in WNS classification, I uniformly assign each county’s
detection date as two years prior to the formal classification. This change only affects the
re-centering around WNS exposure, but does not change the assignment of treatment and
control counties. This is consistent with documented delays in the classification of counties
as WNS confirmed, as in Verant et al. (2018), as well as state wildlife agencies that in some
cases consider true exposure to have started even 4 years prior to the official determination.®

Here, I use the data that is publicly available for 25 counties that are now considered
as WNS confirmed, but were previously classified as WNS suspected. That is, there was
a delay between the time of the official detection of the fungus, and a sufficient number of
bat detections with WNS. In Figure A3a, I summarize the difference between the fungus
and WNS detection years for those 25 counties. On average, these counties potentially
experienced a delay of 1.8 years, with a standard deviation of 1.1 years. I also verify that
these delays appear in the USGS Wildlife Health Information Sharing Partnership Event
Reporting System (WHISPers). In Figure A3b, I plot the difference in the earliest bat

8 Unfortunately, I cannot share the data or summary results on the timing of WNS exposure according to
state agencies until the Fish and Wildlife Service makes it publicly available.
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mortality event attributed to WNS that appears in WHISPers, to the year of confirmed
WNS status. Around 90% of the 205 counties have a WNS event report in WHISPers 1 year
before they are classified with a confirmed WNS status.

A.4 Detailed Results for Insecticides, Fungicides & Herbicides

With a decline in biological pest control, farmers are most likely to increase their use of In-
secticides. However, fungicides are highly correlated with insecticide use because higher pest
pressure results in higher transmission rates of fungi. Agronomic literature has documented
that with higher insect pest pressures, plants and crops are more susceptible to damages
from fungi. There are two main mechanisms that explain the connection between insects
and fungi spread in crops. First, as insects damage the plant, they open more pathways for
fungi to spread, and weaken the defenses of the plant. Second, as insects move across plants
they carry and disperse fungal spores (Fennell et al. 1975; Kluth et al. 2002). These mech-
anisms are consistent with a high correlation between insecticide and fungicide use in the
data of 0.87. Conversely, herbicide use is not directly linked to either insecticide or fungicide
use, consistent with a lower correlation between insecticide and herbicide use of 0.31.

In Table A3, I report the results for fungicide use, that confirm that insecticide use and
fungicide use covary. In contrast, results for herbicide use, Table A4, do not show similar
increases. In fact, herbicide use declines in larger quantities, but also has a baseline use level

that is an order of magnitude larger relative to insecticides and fungicides.

A.5 Including All WNS Confirmed Counties

In the main analysis, I exclude the counties that were exposed after 2014 in order to maintain
a balanced composition in each event-time bin. In Figure A4, I use all the counties that were
exposed up to 2017. This uses all the data, on all the WNS confirmed and non-WNS counties,
in states with WNS exposure up to 2014. However, each event-time dummy has a somewhat
different composition now. This is not a threat to the identification of the effect, but it
complicates its interpretation. Results are similar in their magnitude and precision to those

reported in the main text.

A.6 Limited Data Availability on Crop Yields

Data availability issues present a challenge for the analysis of agricultural productivity. Re-
peated measurements of crop yields across a balanced set of multiple counties are largely

available in intervals of 5 years as part of the agricultural census. While there are annual
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survey records on crop yields, they are available for only a few of the crops, and are only
reported every year for a subset of the counties.

Average crop yields after WNS exposure summarize the net effect of different responses by
farmers and changes to biological pest control conditions. If farmers are able to substitute
most of the lost biological pest control, then any negative effect on yields might only be
temporary. Unfortunately, even for the two most surveyed crops, corn and soybeans, less
than a third of the 1,594 counties included in the main sample have data on yields reported
every year.? These data gaps make it hard to draw strong conclusions regarding how yields
change following WNS exposure.

Agricultural productivity, as measured in crop yields, declines for some crops, but not
others, following exposure to WNS. The results are often imprecise and are sensitive to the
set of sample weights, and inclusion or exclusion of weather controls. Consequently, I report
the distribution of 12 different estimated coefficients for each crop in Figure A5. Specifically,
I estimate effects for a set of crops with sufficiently large sample sizes and representation
throughout the states in the sample. On average, 4 of the 7 crop experience a decline in
yields, but are small in magnitude. The most negatively hit crop is tobacco, with an average
6.8% decline in yield.

A.7 Detailed Results for All-Cause, Internal-Causes & External
Causes of Infant Mortality

In Table A5, T summarize the average effects post-WNS exposure. On average, internal
IMR . increases by 0.33 deaths per-1,000 live births, reflecting an increase of 5% relative to
the mean (Panel A, column 6). These results are robust to the inclusion of both weather
controls, and time varying population shares.!® The increase in infant mortality is larger
and more precisely estimated in the counties that were below the median insecticide use at
baseline (Table A5, Panel B.).

In Tables A6 and A7, I report the estimates for infant mortality from both internal
and external causes (all-cause mortality), and separately for external causes, respectively.
The results confirm that the effect on infant mortality rates is observed even when lumping
together the full data on infant deaths. This means that the observed increase in interanl
IMR is not an artifact of a systematic measurement error — correlated with the spread
of WNS - regarding the cause of death. More importantly, there is no average effect on

infant mortality due to external causes of death, which should not respond to an increased

9 Specifically, there are only 499 and 514 counties with balanced data for corn and soybeans, respectively.
10Ty intervals of 5 years, starting from age group 0 to 4, up to 80 to 84, with 85 and above as the omitted
category.
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insecticide use following WNS exposure.

A.8 Estimates for Additional Health Outcomes

In Table A8, I report the estimated effects for mean birth weight, mean gestation length,
mean APGARS5 score, the share of births classified as low birth weight, and the share of
births classified as premature births. None of these outcomes exhibit a meaningful change.
In fact, given the magnitude of the coefficients, standard errors, and the means of each
outcome, I can reject that there are any large effects on one of these additional outcomes.
As previous work on the effects of pollution exposure on birth outcomes has documented,
these outcomes do not necessarily deteriorate even when infant mortality increases (Chay
and Greenstone 2003; Currie and Neidell 2005).

In addition for evaluating the effects on weight and gestation, I also estimate whether live
births were classified as going below established thresholds. Results for an increase in the
share of low weight births are positive, yet imprecise, and are an order of magnitude lower
than previous estimates using the opening of industrial plants (Currie et al. 2015). Results

on the share of premature births are positive and imprecise.

A.9 Estimating Changes in Mothers’ Characteristics

I use the data in the birth certificates on the age category, educational attainment category,
share of mothers who are white, married, the mean number of prenatal care visits, and the
share of mothers that were smoking for at least some part of the pregnancy. The results in
Figure A6 show extremely small, often very close to zero, differences. I also report the mean
of each outcome to make it easy to verify that the reported differences can be interpreted as

precise zeros.

A.10 Examining the Impacts of Spatial Spillovers on Internal IMR

Attenuation

In the main text, the results for the effect of WNS on internal IMR almost double in size,
from 0.33 to 0.63 deaths per-1,000 live births (Table 1, column 8 and Table 3, column 7,
respectively). The key difference between the two results is the exclusion of the first degree
neighbors (nearest neighbors) to the WNS confirmed counties — those that are most likely
to experience spatial spillovers through wind and water erosion channels.

This suggests that, to some degree, the dampening in the effect in the event-study results

for internal IMR in Figure 2 is due to spatial spillover attenuating the effect of the increased
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insecticide use following WNS exposure. To further establish that this attenuation is mask-
ing the dynamic effect of WNS exposure, I repeat the estimation of the event-study while
excluding the first degree neighbors to the WNS confirmed counties and report the results
in Figure A7.

The results show internal IMR increasing from about 0.2 to 0.4 deaths per-1,000 live
births after exposure to WNS, while there is no systematic difference between exposed and
non-exposed counties prior to WNS exposure. This result supports the finding that internal

IMR increases in counties that experience bat die-offs.

A.11 Evaluating Spatial Correlation of the Standard Errors

I evaluate the degree of spatial clustering on the precision of the estimates in Table A9. In the
first row, I report the coefficients for the four main outcomes: insecticide use, crop revenue,
chemical expenditure, and internal IMR. For ease of comparison, I report the standard
errors from clustering at the county level, as I do throughout the analysis. I then present the
standard errors when clustering at levels above the level of the county. I use the agricultural
statistics districts, which divides the state into agriculturally homogeneous areas, or I divide
the state by its ecological regions (level III), which creates ecologically homogeneous areas.
For more details on these sub-units, see the subsection below on Leave-One-Out Estimation
Results. For insecticide use and crop revenue, standard errors increase when clustering at
levels above the county level, yet they remain nearly identical for the outcome of internal
IMR. Results remain precisely estimated at these two higher levels of clustering.

To allow spatial clustering to not end abruptly at the border of the state, I also use a
spatial HAC as suggested by Conley (1999) and Conley and Taber (2011). I use the centroid
coordinates for each county to define the distance bandwidths, and allow the standard errors
to be flexibly correlated up to, but not above, a certain distance threshold. I report results
for 50, 100, 250, 500, 750, 1000, and 2000 km. The standard errors for insecticide use and
crop revenue are mostly below or close to their estimated standard error when clustering at
the county level. However, for short distance threshold, the standard error for internal IMR
nearly doubles, lowering the precision of the estimate to the 10% level. Overall, these results
demonstrate that the results remain fairly robust to different forms of spatial clustering, and

the clustering at the county level does not systematically underestimate them.
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A.12 Supporting Evidence for the Quasi-Randomness of WNS Ex-

pansion

In Table A10, I estimate a linear probability model for the binary outcome of WNS exposure.
I use lagged values of either the outcomes, pesticide use or internal infant mortality, or the
lagged WNS status of neighboring counties. In column 1, I include the value of each pesticide
type, lagged by 1 period. The coefficients and standard errors are small enough to reject
any meaningful impacts due to previous pesticide use. The same holds true for the lagged
value of internal IMR in column 2. I do not include crop revenue and chemical expenditure,
as those are not available at an annual resolution.

While lagged outcomes fail to predict WNS status, spatial proximity to other WNS
counties acts as a strong predictor. In column 3, I regress the WNS status of county c
in period ¢, on a dummy variable that is equal to 1 if any of the adjacent, first degree,
neighbors of the county, N1, were WNS confirmed in the previous period, ¢ — 1. Having a
first degree neighbor with WNS in the previous period, precisely increases the probability
of being classified with WNS by 0.24 percentage points. In column 4, I expand the lag
structure to include the WNS status of the adjacent county in the last three periods. Having
an adjacent county that has been previously classified as a WNS confirmed county remains
a strong predictor. The effect is mostly driven by the adjacent counties, as seen in column 5
where I include up to three neighboring degrees. Having a first degree neighbor with WNS
is twice as likely to result in WNS detection than having a second degree county with WNS.
A third degree neighbor has an imprecise and negative effect on the probability, which is an
order of magnitude lower than the effect of a first degree neighbor. This patterns persist
even when running a regression with lagged pesticide use, internal IMR, and the lagged WNS

status of neighboring counties.

A.13 Evaluating Potential Estimation Issues in Staggered DD

Recent work on the estimation of staggered difference-in-differences (SDDs) designs has
revealed potential issues that can arise when estimating a post-treatment average effect
using a two-way-fixed-effects (TWFE) estimator. However, the potential problems are solely
due to the implementation of the estimation, and not a flaw in the research design itself
(Borusyak et al. 2021; Callaway and Sant’Anna 2020; Chaisemartin and D’Haultfoeuille
2020; Goodman-Bacon 2021; Sun and Abraham 2020).1 See Baker et al. (2021) for a recent

review of the estimation issues, and a comparison of the suggested alternative estimation

1 These papers focus on settings where there are a set of never-treated units, as in the empirical setting I
study in this paper.
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techniques.

The main intuition around the estimation of an SDD using TWFE is that units that
switch treatment status are compared both to non-treated units, but also to previously
treated units. In the presence of heterogeneous treatment effects across units, or dynamic
treatment effects, comparison of treatment switchers and previously treated units violates
the parallel trends assumption. As the TWFE recovers a weighted average of the possible
DD comparisons, those weights have undesired properties, and can even be negative.

I begin with using the diagnostic DD-decomposition developed in Goodman-Bacon (2021).
In Figure A8, I present the different 2X2 DD estimates from the possible comparisons of
treated to never-treated units, and timing-groups that compare early to late, or late to early,
treated units. Because the majority of the potential issues are related to having multiple
treatment cohorts, and multiple timing-groups comparisons, I focus on the two outcomes that
I observe annually: insecticide use and internal IMR. I plot decompositions that use differ-
ent weights, and include in each plot lines that highlight the ATE recovered by the TWFE
estimator, as well as the weighted average of the treated to never-treated comparisons.!?

The DD-decomposition reveals two key insights. First, most of the weight is assigned to
the DD comparisons of treated to never-treated units (the “good” comparisons), and very
little is assigned to the timing-groups (the potentially “bad” comparisons). This is due to
the fact that in this setting, there are many never-treated units (Borusyak et al. 2021).
The second important observation is that as a result of the first one, there is very little
difference between the weighted TWFE estimate and the re-weighted ATE that uses only
the “good” comparisons. Overall, the results from the DD-decomposition greatly reduce the
concerns regarding the use of the TWFE estimator in order to obtain average post-WNS
effect estimates.

Following Bertrand et al. (2004), who suggest collapsing the data into pre- and post-
period and run a two period DD regression, I implement a similar approach using long
differences, as in Burke and Emerick (2016). I use the same composition of counties as in
the main estimation reported in the paper, and compare them in two time periods, 2002 to
2004 and 2015 to 2017, before and after they were exposed to WNS.!3 I choose those specific
years because they are represent the time right before any indication of WNS in the U.S. and
right after the final county in my treatment group phases into treatment. Comparing the
WNS confirmed counties to non-WNS counties recovers a weighted average of the dynamic

treatment effects, as some counties are treated for over a decade and some for only a few

121 use the original weights as assigned by the TWFE estimator, and re-scale them such that they sum up
to 1.

13 For crop revenue, as data are only available in 5 year intervals, this effectively collapses to comparing
2017 to 2002.
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years by 2017. The important feature is that in this long-differences post-WNS estimation,
I avoid having comparisons between early and late, or late and early, treated units affect the
estimate for WNS exposure.

In Table A11, I report the results from this pre- and post-collapse procedure. Overall,
coefficients have similar magnitudes, if not larger than their comparable coefficients in Table
A2. Because the goal of this test is to provide a simple evaluation to whether the issues
of negative weights arise in the full sample DD estimation, the emphasis here is on the
coefficients, and less so on their precision, especially when using only two time periods.

Finally, to resolve any potential standing issues with the differential timing of treatment,
I also re-estimate the results for insecticide use and internal IMR, using one of the newly
developed estimators. Specifically, I use the cohort-weighted estimator developed by Sun
and Abraham (2020). The estimator runs a regression where the sets of leads and lags are
interacted with a cohort dummy. This effectively estimates a separate dynamic treatment
effect path for each cohort. The different leads and lags are then weighted, according to the
share of each cohort in the panel, to estimate the average dynamic treatment effect path
across cohorts. In Figures A9 and A10, I report the results from the TWFE estimator in the
left panel, and the results from the Sun and Abraham (2020) estimator in the right panel.
For both outcomes, the results are nearly identical.

To conclude, different diagnostic tools and alternative estimation techniques to the stan-
dard TWFE estimator recover very similar estimates for the treatment effects. It appears
that in this setting, due to the large number of never-treated units, the staggered timing of

treatment does not present a major issue for the estimation of the effects.

A.14 Leave-One-Out Estimation Results

I also test the robustness of the results by excluding one unit from the analysis. I either
exclude one county, or a set of counties by excluding one agricultural statistics district, or
one ecological region at a time. To obtain the above county classification, I match each
county to two sets of groups. First, the Agricultural Statistics Districts (ASDs), as classified
by the USDA (U.S. Department of Agriculture 2012). Second, the ecological region the
county resides in, as classified by the EPA (U.S. Environmental Protection Agency 2013).
The USDA groups counties into ASDs within each state based on crop composition,
environmental conditions, and other factors that help construct a set of counties that are
more agriculturally homogeneous. This subdivision of states creates between 1 to 9 ASDs,
depending on the size and variation in each state. The EPA defines ecological regions as

areas with similar biotic and abiotic components, and how self-contained and connected they
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are to nearby regions. I use the third level, out of four, which allows to classify counties
by their prevalent ecological region.'* The main sample of 27 states has 164 ASDs, and 37
ecological regions.

For each one of the excluded unit levels, I re-estimate the specification in Equation (1).
I summarize the results in Figures Alla, Allb, and Al1ld. The distribution of estimates
for each outcome is centered around the estimate reported in the main text, with a small
dispersion around that center. This helps to rule out that the results are mostly driven by

the presence of outliers in the sample.

A.15 Permutation Inference

To further rule out any spurious effects I use Permutation Inference methods (Fisher 1966;
Bertrand et al. 2004; Young 2019). I randomly assign treatment status as it is recorded
in main sample either by: (i) fully randomizing treatment across counties and year (full
randomization), (ii) randomizing the treatment across counties but maintaining the time
series component of the treatment (block randomization), and (iii) randomizing only the time
series component of the treatment within each treated county (within randomization).!s In
Figure A12, I report the results for the three types of permutation tests for the main outcomes
I analyze in the main text. For each outcome, the effect estimated in the observed sample is
in the right-tail of all the distributions generated from the permutation procedures, and all

distributions are centered around zero.

A.16 Results Using a Strictly Balanced Panel

In the main estimation results, Table 1, I report results for samples that are fully balanced
and have the same number of observations and clusters for pesticide use, as well as internal
IMR. However, when examining crop sales or chemical expenditures the number of clusters
declines because fewer counties are fully balanced across the 5 agricultural censuses. I verify
that the changes in composition do no have a meaningful effect on the results by constraining
all outcomes to the same strictly balanced sample containing the same counties, and report
those results in Table A12.

4 Detailed map is available on: ftp://newftp.epa.gov/EPADataCommons/ORD/Ecoregions/us/Eco_Level _ITT_US.pdf
15 Block randomization tests for any time trends that are not properly accounted for, and within random-
ization tests for any cross sectional differences that are not controlled for.
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A.17 Centroid Distance Between Counties

In the analysis, I use the share of adjacent counties that are also WNS confirmed counties. I
focus on the adjacent counties because bats are considered to have a maximum nightly flight
radius of 50 km, which is close to the highest distance between the centroids of adjacent
counties. I summarize the centroid distance between first (adjacent), and second degree

neighboring counties in Figure A13.

All



Figure A1l: Secular Trends For Main Outcome Variables

(a) Pesticide Use, by Type
Aggregate Pesticide Use, by Type (1997=1)

1.5 .. GMOs introduce resistance against herbicides,
Insecticide Use allowing farmers to increase herbicide applications
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(b) Crop Revenue (¢) Chemical Expenditure
Total Crop Revenue, Billions of 2017 Dollars Total Chemical Expenditure, Billions of 2017 Dollars
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(d) All-Cause Infant Mortality Rate

Mean Infant Mortality Rate per-1,000 Live Births, Weighted by Live Births

121
State-Level

s Contiguous US

Year
Notes: (a) Changes in mean pesticide use, by pesticide class, over time, scaled to baseline levels

in 1997. (b) Change in total crop revenue as measured in demi-decadal agricultural census. (c)
Change in total chemical expenditure as measured in demi-decadal agricultural census. (d) Infant

mortality rates, from all causes of death, by state or for the contiguous U.S., weighted by live
births.

A12



Figure A2: Detections of Insecticides in Water Samples, by Month

Mean Number of Insecticide Detections in Water Samples (in Thousands)

1 2 3 4 5 6 7 8 9 10 11 12
Month

Notes: Data on the number of water samples that had detectable levels of one of the following
insecticide compounds: Azinphos-methyl, Carbaryl, Carbofuran, Chlorpyrifos, Diazinon, Disul-
foton, Fipronil, Fonofos, Lindane, Malathion, Methyl parathion, Parathion, Phorate, Propargite,
Terbufos.

Source: Water quality data from USGS.
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Figure A3: Evidence of Delays in WNS Detections

(a) Distribution of Differences Between WNS  (b) Distribution of Differences Between WNS

Confirmed and Suspected Determinations Cases in WHISPers and Confirmed Detections
Percent of Counties (n=25) Percent of Counties (n=205)
100 100
90 90
80 80
704 704
60 60
50 50
404 40+
304 30
20 20
104 104
0- 0 f f
-2 -1 0 1 2 3 4 -2 -1 0 1 2 3 4
Difference in Years Between Difference in Years Between
First Suspected & Detected Status First WNS Event in WHISPers & Confirmed WNS Status

Notes: Distribution of delayed WNS classification, in years, for the (a) 25 counties that have
public data on WNS suspected and confirmed determinations, and (b) the 205 counties that have
reported mortality of bats due to WNS in the USGS WHISPER system.
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Figure A4: Effects on Insecticide Use and Internal IMR Following WNS Exposure, All
WNS Confirmed Counties

(a) Insecticide Use (b) Internal IMR

Insecticide Use (in kg-km™) Internal Infant Mortality Rate (per-1,000 Live Births)

<o
|

T T T T T T T
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 -6 -5 -4 -3 2 -1 0 1 2 3 4 5 6
Years Relative to WNS Detection

Years Relative to WNS Detection

Notes: Estimated coeflicients and 95% Cls from the specification in Equation (2). I include
all WNS confirmed counties up to 2017, instead of excluding those exposed after 2014, and the
composition in each event-time bin is no longer balanced as a result. Top and bottom coded
event-time coefficients are not reported. The regression includes county and state-by-year fixed
effects. Observations are population-weighted. Standard errors are clustered at the county level.
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Figure A5: Distribution of Effects on Yields

Kernel Density

. |
10 | Crop (Mean)
|
354 | Alfalfa (-.008)
: Corn (-.01)
30 | Hay (021)
| Oats (.019)
25 - ‘ Soybeans (.03)
| Tobacco (-.078)
20 | Wheat (-.005)
|
15 '
10 |
|
51 |
|
0 |
I I I I I
-2 -1 0 1 2

Estimated Effect of WNS Exposure on Yields (1n Log Points)

Notes: Kernel densities summarizing the distribution of estimated coefficients from the specifica-
tion in Equation (1). Each density function summarizes 12 different estimates from a balanced or
unbalanced sample, that either include or exclude weather controls, and are either unweighted,
weighted by baseline cropland area in 2002, or weighted by specific crop acres in 2002. All regres-
sions include county fixed effects.
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Figure A6: Verifying There Are No Differences in Mothers’ Characteristics

Differences in Mothers' Characteristics Dep. Var. Mean
Age 15t0 19 0.002
Age 20 to 24 —_— 0.115
Age 25 to 29 0.297
Age 30 to 34 0.290
Age 35 to 39 —_0— 0.197
Age 40 to 44 0.083
Age 45 to 49 0.017
Age 50 to 54 0.001
Completed Education 0 to 8 —_—f— 0.037
Completed Education 9 to 11 —_— 0.141
Completed Education 12 —_— 0.332
Completed Education 13 to 15 o s " 0.266
Completed Education 16 to —_—— 0.192
White —_—— 0.836
Married e * 0.609
Mean Prenatal Care Visits (See Notes) 11.602
Smoking 0 0.182
T I
-.01 0 .01

Notes: Estimated coeflicients and 95% CIs from the specification in Equation (1). Each coefficient
is estimated in a separate regression. To allow for easier visual inspection of the CIs, I omit the
point estimate (-.057) and 95% CI (ranging from -.15 to .037) for the mean prenatal care visits
as it distorts the scale. The regressions includes county and state-year fixed effects. Observations
are weighted by the number of live births. Standard errors are clustered at the county level.
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Figure A7: Dynamic Effects on Internal IMR When Excluding Nearest Neighbors

Internal Infant Mortality Rate (per-1,000 Live Births)
1.5

-1.57

I I I I I I I I I I I I
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
Years Relative to WNS Detection

Notes: Estimated coefficients and 95% CIs from the specification in Equation (2). The sample
is equivalent to the one used in the results in Figure 2f, with the exclusion of the first degree
neighbors of the WNS confirmed counties, in order to reduce the effect of spatial spillovers that
might be attenuating the results. The regression include county and state-by-year fixed effects.
Observations are population weighted. Standard errors are clustered at the county level.
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Figure A8: Bacon DD-Decomposition

Insecticide Use
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(f) Population (1997) Weights
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Notes: Results from performing the Bacon Difference-In-Differences Decomposition for insecticide
use (in kg per-sq km), and for internal IMR (in deaths per-1,000 live births). Results are either
equally-weighted, weighted by baseline cropland area in 2002, or by baseline population in 1997.
Each figure shows the separate DD estimates obtained from comparing each treatment switching
cohort, either to never-treated control units (circles), or using timing group that compare late to
early switchers, or early to late switchers (diari‘lxolnds).



Figure A9: Insecticide Use Following WNS Exposure

(a) Two Way Fixed Effects Estimator (b) Alternative Differential Timing Estimator

Insecticide Use (in kg-km™) Insecticide Use (in kg-km®)

T T T T T
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 -6 -5 -4 -3 -2 - 0 1 2
Years Relative to WNS Detection Years Relative to WNS Detection

T T T T
3 4 5 6

Notes: Estimated coefficients and 95% CIs from the specification in Equation (2). Top and bottom
coded event-time coefficients are not reported.The regression includes county and state-by-year
fixed effects. Left panel reports estimates from a standard TWFE estimator, while the right panel
report estimates from using the estimator developed in Sun and Abraham (2020). Observations
are weighted by baseline cropland area in 2002. Standard errors are clustered at the county level.
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Figure A10: Internal Infant Mortality Rate Following WNS Exposure

(a) Two Way Fixed Effects Estimator (b) Alternative Differential Timing Estimator

Internal Infant Mortality Rate (per-1,000 Live Births) Internal Infant Mortality Rate (per-1,000 Live Births)
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Years Relative to WNS Detection Years Relative to WNS Detection
Notes: Estimated coefficients and 95% ClIs from the specification in Equation (2). Top and bottom
coded event-time coeflicients are not reported.The regression includes county and state-by-year
fixed effects. Left panel reports estimates from a standard TWFE estimator, while the right panel
report estimates from using the estimator developed in Sun and Abraham (2020). Observations
are weighted by the number of live births. Standard errors are clustered at the county level.
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Figure A11: Leave-One-Out Estimation Results

(a) Insecticide Use (b) Crop Revenue
Percent of Estimates Percent of Estimates
1007 Jackknife Level 1007 Jackknife Level
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Post-WNS Effect on Insecticide Use, DD Estimate Post-WNS Effect on Total Crop Revenue, DD Estimate
(c) Chemical Expenditure (d) Internal IMR
Percent of Estimates Percent of Estimates
1007 Jackknife Level 1007 Jackknife Level
90 County 904 County
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404 404
304 30
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Post-WNS Effect on Total Chemical Expenditure, DD Estimate Post-WNS Effect on Internal IMR, DD Estimate

Notes: Distribution of estimated coefficients from the specification in Equation (1), when exclud-
ing one unit at a time. All regressions include county and state-year fixed effects. Observations
are population-weighted.
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Figure A12: Permutation Inference Results

(a) Insecticide Use

Percent of Permutations

(b) Crop Revenue

Percent of Permutations
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Notes: Results from randomly reassigning treatment status and re-estimating the treatment ef-
fects. I estimate Equation (1) 1,000 times for each permutation type. Each regression include
county and state-year fixed effects. Observations are population-weighted. Each histogram shows
the distribution of the coefficients on exposure to WNS. The vertical line represents the value of
the estimation from the observed sample. Permutation was conducted either on the entire sample
(full, in tan), across counties such that the temporal order of the treatment was preserved (block,
in purple), or within treated counties such that only the temporal order was randomized (within,

in blue).
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Figure A13: Distance Between Neighboring Counties
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Notes: Histograms showing the centroid distance distribution between adjacent counties (first
degree neighbors), and the second degree neighboring counties. Most second degree neighboring
counties have a centroid distance well above 50 km, which is approximately the maximum nightly
flight radius of bats.
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Table A1

Summary Statistics for Main Estimation Sample

Variable Mean SD Min Max N

WNS Presence Dummy 0.07 .25 0 1 33,474
Insecticide Use, kg-km™ 9.28 27 0 2,145 33,474
Fungicide Use, kg-km™ 10.96 37 0 2,475 33,474
Herbicide Use, kg-km™ 61.50 73 0 2,184 33,474
Cropland in 2002, km? 339 379 0.24 2,605 33,474
County Area, km? 1,434 850  222.74 17,721 33,474
Crop Sales, Thousands of Dollars-km™ 27.93 34 0 289.20 7,769
Chemical Expenditure, Thousands of Dollars-km™ 2.4 2.9 21 7,867
Live Births 1,074 2,833 7 85928.00 33,474
All-Cause IMR (per-1,000 Live Births) 7.29 6.2 0 107.14 33,474
Internal IMR (per-1,000 Live Births) 6.77 6 0 107.14 33,474
External IMR (per-1,000 Live Births) 0.43 14 0 45 33,474
Population 84,140 202,106 1,326 5,373,418 33,474

Notes: Summary statistics for the main estimation sample 1997 to 2017, for the counties in the states that had

at least one WNS confirmed county by 2014. See text for more deatils.

Source: WNS expansion data, and Pesticide use data from the USGS. Crop sales data from the USDA NASS.
Infant health outcomes from the NCHS. Population data from the Census Bureau.
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Table A2
Insecticide Use DD Estimates
Annual Aggregate Insecticide Use in kg-km™

Panel A. Average Treatment Effects

n @ 6 @ 6 (6

WNS 224 219 196 256 1.98 252
(0.49) (0.49) (0.65) (0.67) (0.65) (0.67)
R? 053 053 058 058 058 0.58

Panel B. Heterogeneous Treatment Effects
o 2 & @ 6 (6
WNSxLow Baseline 3.80 3.75 448 3.58 4.46  3.60
(0.46) (0.47) (0.75) (0.54) (0.76) (0.52)
WNSxHigh Baseline 0.03 -0.01 0.63 158 0.67 1.49
(0.68) (0.68) (0.70) (1.00) (0.70) (0.99)

R? 0.53 0.53 0.58 0.58 0.58 0.58
County FEs X X X X X X
State-Year FEs X X X X X X
Weather Controls X X X
Weighted E E A B A P
Dep. Var. Mean 9.28 9.28 1094 7.71 1094 7.50
N 33,474 33,474 33,474 33,474 33,474 33,474
Clusters 1,594 1,594 1,594 1,594 1,594 1,594

Notes: Estimation results for the specification in Equation (1). Observations
are either equally weighted (E), weighted by cropland area in 2002 (A), prior to
the emregence of WNS, weighted by the number of live births (B), or population-
weighted (P). The reported mean for the dependent variable is the weighted mean.
Standard errors are clustered at the county level.
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Table A3
Fungicide Use DD Estimates
Annual Aggregate Fungicide Use in kg-km™

Panel A. Average Treatment Effects

n @ 6 @ 6 (6

WNS 114  1.05 042 191 044 1.84
(0.47) (0.47) (0.62) (0.62) (0.61) (0.61)
R2 064 064 067 068 067 0.69

Panel B. Heterogeneous Treatment Effects
o 2 & @ 6 (6
WNSxLow Baseline 2.47 238 220 274 207 275
(0.44) (0.44) (0.56) (0.62) (0.57) (0.61)
WNSxHigh Baseline -0.73 -0.82 -0.52 1.12 -042 0.97
(0.72) (0.72) (0.79) (0.86) (0.78) (0.85)

R? 0.64 0.64 0.67 0.68 0.67 0.69
County FEs X X X X X X
State-Year FEs X X X X X X
Weather Controls X X X
Weighted E E A B A P
Dep. Var. Mean 10.96 10.96 10.53 9.35 10.53 9.31
N 33,474 33,474 33,474 33,474 33,474 33,474
Clusters 1,594 1,594 1,594 1,594 1,594 1,594

Notes: Estimation results for the specification in Equation (1). Observations
are either equally weighted (E), weighted by cropland area in 2002 (A), prior to
the emregence of WNS, weighted by the number of live births (B), or population-
weighted (P). The reported mean for the dependent variable is the weighted mean.
Standard errors are clustered at the county level.
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Table A4
Herbicide Use DD Estimates
Annual Aggregate Herbicide Use in kg-km™

Panel A. Average Treatment Effects

n @ 6 @ 6 (6

WNS 6.90 -6.92 -10.76 -0.85 -10.61 -0.85
(1.50) (1.50) (2.92) (1.70) (2.90) (1.55)
R? 089 0.89 088 090 0.88 0.90

Panel B. Heterogeneous Treatment Effects
L 2 6B @ (6 (6
WNS xLow Baseline -10.05 -10.15 -20.41 -4.06 -20.71 -3.76
(1.63) (1.63) (3.54) (1.95) (3.57) (1.84)

WNSxHigh Baseline -2.47 -2.38 -5.66 221 -529 194
(2.10) (2.08) (3.64) (2.31) (3.59) (2.08)

R? 0.89 0.89 0.88 0.90 0.88 0.90
County FEs X X X X X X
State-Year FEs X X X X X X
Weather Controls X X X
Weighted E E A B A P
Dep. Var. Mean 61.50 61.50 123.25 41.52 123.25 41.49
N 33,474 33,474 33,474 33,474 33,474 33,474
Clusters 1,594 1,594 1,594 1,594 1,594 1,594

Notes: Estimation results for the specification in Equation (1). Observations
are either equally weighted (E), weighted by cropland area in 2002 (A), prior to
the emregence of WNS, weighted by the number of live births (B), or population-
weighted (P). The reported mean for the dependent variable is the weighted mean.
Standard errors are clustered at the county level.
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Table A5
Infant Mortality DD Estimates
Annual Internal Infant Mortality Rate, per-1,000 Live Births

Panel A. Average Treatment Effects

n @ 6 @ 6 6 O

WNS 048 046 049 046 033 033 0.33
(0.20) (0.20) (0.19) (0.17) (0.11) (0.11) (0.10)
R? 015 0.5 015 016 035 035 0.33

Panel B. Heterogeneous Treatment Effects
o 2 & @ 6 (6 (0
WNSxLow Baseline 0.50 049 053 055 044 045 043
(0.28) (0.28) (0.27) (0.20) (0.15) (0.15) (0.14)

WNSxHigh Baseline 044 042 044 041 022 022 0.24
(0.21) (0.21) (0.21) (0.22) (0.13) (0.12) (0.12)

R? 0.15 0.15 0.15 016 035 035 0.33
County FEs X X X X X X X
State-Year FEs X X X X X X X
Weather Controls X X X
Population Shares X X X
Weighted E E E A B B P
Dep. Var. Mean 6.77 677 6.77 635 6.69 6.69 6.56
N 33,474 33,474 33,474 33,474 33,474 33,474 33,474
Clusters 1,594 1,594 1,594 1,594 1,594 1,594 1,594

Notes: Estimation results for the specification in Equation (1). Observations are either
equally weighted (E), weighted by cropland area in 2002 (A), prior to the emregence of
WNS, weighted by the number of live births (B), or population-weighted (P). The reported
mean for the dependent variable is the weighted mean. Standard errors are clustered at the
county level.
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Table A6
Infant Mortality DD Estimates
Annual All-Cause Infant Mortality Rate, per-1,000 Live Births

Panel A. Average Treatment Effects

n @ 6 @ 6 6 O

WNS 047 046 049 049 033 033 0.33
(0.20) (0.20) (0.19) (0.17) (0.11) (0.11) (0.10)
R? 015 0.5 015 017 036 036 0.34

Panel B. Heterogeneous Treatment Effects
o 2 & @ 6 (6 (0
WNSxLow Baseline 0.48 047 050 0.66 044 044 042
(0.28) (0.28) (0.27) (0.22) (0.14) (0.13) (0.13)

WNSxHigh Baseline 046 045 047 040 023 022  0.25
(0.23) (0.23) (0.23) (0.22) (0.14) (0.13) (0.13)

R? 0.15 0.15 0.15 017 036 036 0.34
County FEs X X X X X X X
State-Year FEs X X X X X X X
Weather Controls X X X
Population Shares X X X
Weighted E E E A B B P
Dep. Var. Mean 729 729 729 687 715 7.15 7.02
N 33,474 33,474 33,474 33,474 33,474 33,474 33,474
Clusters 1,594 1,594 1,594 1,594 1,594 1,594 1,594

Notes: Estimation results for the specification in Equation (1). Observations are either
equally weighted (E), weighted by cropland area in 2002 (A), prior to the emregence of
WNS, weighted by the number of live births (B), or population-weighted (P). The reported
mean for the dependent variable is the weighted mean. Standard errors are clustered at the
county level.
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Table A7
Infant Mortality DD Estimates
Annual External Infant Mortality Rate, per-1,000 Live Births

Panel A. Average Treatment Effects

“n @ 6 @ 6 (6 (O

WNS -0.018 -0.020 -0.020 0.024 0.011 0.009 0.012
(0.048) (0.048) (0.048) (0.065) (0.026) (0.026) (0.025)
R? 009 009 009 010 018 019 0.8

Panel B. Heterogeneous Treatment Effects
(1) (2) (3) (4) (5) (6) (7)
WNSx Low Baseline -0.010 -0.013 -0.017 0.102 0.013 0.010 0.009
(0.067) (0.067) (0.068) (0.105) (0.039) (0.039) (0.037)

WNSxHigh Baseline -0.030 -0.031 -0.025 -0.017 0.009 0.008 0.015
(0.058) (0.058) (0.057) (0.077) (0.029) (0.027) (0.028)

R? 0.09 0.09 0.09 0.10 0.18 0.19 0.18
County FEs X X X X X X X
State-Year FEs X X X X X X X
Weather Controls X X X
Population Shares X X X
Weighted E E E A B B P
Dep. Var. Mean 0.43 0.43 0.43 0.47 0.38 0.38 0.38
N 33,474 33,474 33,474 33,474 33,474 33,474 33,474
Clusters 1,594 1,594 1,594 1,594 1,594 1,594 1,594

Notes: Estimation results for the specification in Equation (1). Observations are either equally
weighted (E), weighted by cropland area in 2002 (A), prior to the emregence of WNS, weighted by
the number of live births (B), or population-weighted (P). The reported mean for the dependent
variable is the weighted mean. Standard errors are clustered at the county level.
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Table A8
Infant Health Outcomes DD Estimates

Birth Outcome Mean Birth Outcome Share

Weight Log(Weight) Gestation APGAR5 Low Weight Premature

(1) (2) (3) (4) (5) (6)
WNS -5.0934 -0.0015 -0.0132 -0.0084 0.0009 0.0014
(2.6592)  (0.0008) (0.0079)  (0.0112) (0.0006) (0.0009)
R? 0.87 0.88 0.81 0.75 0.73 0.73
County FEs X X X X X X
State-Year FEs X X X X X X
Weighted B B B B B B
Dep. Var. Mean 3,281.69 8.10 38.63 8.84 0.08 0.12
N 33,474 33,474 33,474 33,474 33,474 33,474
Clusters 1,594 1,594 1,594 1,594 1,594 1,594

Notes: Estimation results for the specification in Equation (1). Observations are weighted by the number
of live births (B). Birth weight is measured in grams, gestation in weeks, and APGARSD is a score between
0 and 10, determined five minutes after delivery. Births where the infant is below 2,500 grams are classified
as low birth weight. Births that happen before the 37th week are classified as premature births. The
reported mean for the dependent variable is the weighted mean. Standard errors are clustered at the
county level.
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Table A9
Spatial Clustering at Different Spatial Scales

Coefficients
Insecticide  Crop Chemical Internal
Use Revenue Expenditure IMR
(1) (2) (3) (4)
WNS 2.59 -7.42 -0.41 0.33

Clustering by Administrative Units

County (0.66)  (2.15) (0.13) (0.11)
Agricultural Statistics District  (0.96) (2.39) (0.15) (0.10)
State-Ecological-Region (0.95) (2.49) (0.15) (0.11)

Clustering by Distance Thresholds

Distance: 50 km (0.40) (0.88) (0.07) (0.18)
Distance: 100 km (0.42) (1.13) (0.09) (0.17)
Distance: 250 km (0.46) (1.34) (0.11) (0.17)
Distance: 500 km (0.52) (1.03) (0.08) (0.16)
Distance: 750 km (0.55) (1.14) (0.11) (0.13)
Distance: 1000 km (0.55)  (1.38) (0.13)  (0.14)
Distance: 2000 km (0.49)  (1.43) (0.13) (0.13)

Notes: Estimation results for the specification in Equation (1), for insecticide use, crop
revenue, chemical expenditure, and internal infant mortality rate (IIMR). Observations are
population-weighted. There are 1,594 county clusters, 164 agricultural statistics district
clusters, and 119 state-ecological-region clusters.
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Table A10

WNS Expansion Prediction Estimates
Outcome: Binary WNS Exposure Status

(1) (2) (4) (5) (6)
Insecticide Use 0.00038 0.00021
(0.00014) (0.00009)
Fungicide Use; 0.00012 0.00006
(0.00013) (0.00010)
Herbicide Use;_; -0.00049 -0.00022
(0.00011) (0.00008)
Internal IMR;_; 0.00037 0.00029
(0.00017) (0.00015)
WNSHM 0.11271  0.22212  0.22103
(0.01936) (0.01591) (0.01922) (0.01917)
WNSN] 0.10671
(0.01296)
WNSNS 0.07711
(0.01327)
WNSH? 0.07035  0.06990
(0.01271) (0.01270)
WNSH? -0.01250 -0.01248
(0.00841) (0.00839)
County FEs X X X X X X
EcoRegion-Year FEs X X X X X X
Weighted E E E E E E
R? 0.58 0.58 0.59 0.63 0.59 0.59
N 31,880 31,880 28,692 25,504 28,692 28,692
Clusters 1,594 1,594 1,594 1,594 1,594 1,594

Notes: Estimation results for a linear probability model with WNS status as the binary outcome
regressed on lagged values of pesticide use, or WNS status of neighboring counties (first, second, and
third degree neighbors). Observations are equally weighted. Standard errors are clustered at the
county level.

Source: Data on White Nose Syndrome status and pesticide use are from the USGS. Eco-region
classification is from the EPA.
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Table A11
Long Differences DD Estimates

Insecticide Crop Chemical Internal
Use Revenue Expenditure IMR
o @ B @& 6 (© @O O
WNS 232 247 -9.89 -9.09 -0.88 -046 0.35 041
(0.67) (0.83) (1.26) (2.75) (0.11) (0.16) (0.40) (0.19)
R? 0.76 0.79 093 091 092 090 058 0.7
County FEs X X X X X X X

X
Pre/Post by State FEs X X X X X X X X
Weighted E P B P E P E P

Dep. Var. Mean 816 6.70 27.52 26,51 256 1.83 6.69 6.40
N 3,188 3,188 2,940 2,940 3,036 3,036 3,188 3,188
Clusters 1,594 1,594 1,470 1470 1,518 1,518 1,594 1,594

Notes: Estimation results for the specification in Equation (1) for a sample containing the years
2002 to 2004 and 2015 to 2017, collpased as pre- and post-treatment. One exception to that is
for the crop revnue results that only use 2002 and 2017 as data are reported every 5 years. The
regressions comapre the counties that were classified as WNS confirmed between 2006 and 2014, to
counties that were never classified as WNS confirmed or suspected. Observations are either equally
weighted (E), or population-weighted (P). The reported mean for the dependent variable is the
weighted mean. Insecticide use is measured in kg-km™. Crop revenue and chemical expenditure
are meausred in thousands of dollars per-km™2. Internal infant mortality rate (IMR) is meausred
in deaths per-1,000 live births. Standard errors are clustered at the county level.
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Table A12

Strictly Balanced DD Estimates

Insecticide Crop Chemical Internal
Use Revenue Expenditure IMR
Panel A. Average Treatment Effects
o 2 & @ 6 6 (1) ©
WNS 2.04 200 -810 -7.15 -0.70 -0.41 043 0.25
(0.52) (0.61) (1.12) (2.20) (0.09) (0.13) (0.17) (0.10)
R? 056 059 093 091 092 091 0.16 0.34
Panel B. Heterogeneous Treatment Effects
o @ B @ 6 © @O @
WNSxLow Baseline 3.85 342 -12.07 -12.97 -1.01 -0.81 0.54 0.36
(0.53) (0.55) (1.07) (2.52) (0.09) (0.16) (0.25) (0.13)
WNSxHigh Baseline -0.21 0.72 -327 -193 -0.32 -0.05 0.28 0.14
(0.67) (0.81) (1.68) (2.41) (0.13) (0.14) (0.20) (0.12)
R? 0.56 059 093 091 092 091 0.16 0.34
County FEs X X X X X X X X
State-Year FEs X X X X X X X X
Weighted E P E P E P E P
Dep. Var. Mean 9.80 7.88 29.67 27.99 252 1.85 6.69 6.50
N 29,715 29,715 7,075 7,075 7,075 7,075 29,715 29,715
Clusters 1,415 1,415 1,415 1,415 1415 1,415 1,415 1415

Notes: Estimation results for the specification in Equation (1)

. The sample if strictly balanced for

all outcomes such that they have the same sample compoisition. Observations are weighted equally
(E), or by the total population in the county-year observation (P), using estimated population sizes
as reported by the Census Bureau. The reported mean for the dependent variable is the weighted
mean. Insecticide use is measured in kg-km™2. Crop revenue is meausred in thousands of dollars
per-km™2. Chemcial expenditure is measured in thousands of dollars per-km™. Internal infant
mortality rate (IMR) is meausred in deaths per-1,000 live births. Standard errors are clustered at

the county level.

A36



B Additional Descriptive Data

Here I include additional summary figures regarding the data, or classifications used in the
data.

B.1 Additional Controls

As additional controls, for the results reported in the Appendix, I use the Finescaled Weather
Data Set for the U.S. as described in Schlenker and Roberts (2009). I use the number of
degree days, in Celsius, in 5 degree bins, as well as data on precipitation, all at a county-
year level. I construct weather variables for the agricultural growth period of April through
September. Finally, I use population data from the Census Bureau that is interpolated
between decadal census years to construct population shares by age group, and calculate the

crude birth rate in each year.

B.2 Number of WNS Detections by Year

Figure B1 shows the number of newly classified WNS counties, for either both confirmed
and suspected statuses, or just confirmed. The number of confirmed WNS counties by-state,
by-year, are summarized in Table B1. The tabulation by-state-year demonstrates that in
some cases state-by-year fixed effects might absorb a considerable amount of the treatment
effect.

B.3 Confirmed Versus Suspected WNS Counties

In the main analysis, I compare the counties that are classified as confirmed WNS counties
to counties never confirmed or suspected as a WNS county. A WNS confirmed county has
had multiple samples of bats test positive for the fungus, and multiple bats demonstrating
syndromes of WNS. A WNS suspected county is a county that has had bats test positive for
the fungus, but have not had bats demonstrate syndromes yet. In the main map, Figure 1,
I report the year of WNS classification for both WNS confirmed and suspected counties. In
Figure B2, I focus on the group of states that had at least one WNS county by 2014, as used

in the main analysis. I highlight the counties that are classified as WNS confirmed counties.
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B.4 Classifying Counties According to the Ecological Regions of
the United States, Level II1

I use the data from the Environmental Protection Agency (EPA) on the Ecological Regions
of the United States. The EPA reports the classifications at four different levels. Level I is
the most coarse, while Level IV is the finest level of classification. I assign counties based
on their area overlap with the Level III layer provided by the EPA. Specifically, for each
county, I calculate the share of area overlap with each Level III ecological region, and assign
the region with the highest share of overlap. This assignment results in 37 ecological regions
assigned to the counties in the main analysis sample. In Figure B3, I plot the classification

of counties by ecological region, and the names of the regions in Figure

B.5 State Agricultural Statistics Districts

The US Department of Agriculture (USDA) divides each state up to 9 different Agricultural
Statistics District (ASDs). The divisions are made such that the counties within each ASD

are agriculturally homogeneous. In Figure B4, I plot the sub-state division into ASDs.
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Figure B1: Number of WNS Counties, by Status, by Year
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Notes: The cumulative number of counties each year with any WNS status, confirmed statues, or
suspected status. Dashed line in 2014 highlights the set of counties used in the main analysis.
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Figure B2: WNS Confirmed Counties
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Notes: Map shows th-émexpansion of WNS up to 2014, focusing on the states that had a WNS

county by the end of 2014. Counties that are classified as WNS confirmed counties are highlighted
with a gray border.
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Figure B3: Ecological Regions Levels III & County Assignment
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Notes: Map shows the classification of counties into ecological regions, focusing on the states that
had a WNS county by the end of 2014. For more information on the EPA’s classification, see:

https://www.epa.gov/eco-research /ecoregions
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Figure B4: Agricultural Statistics Districts

Notes: Map  shows the classification of counties into Agricultural ~ Statis-

tics  Districts, focusing on the states that had a WNS county by the

end of 2014. For more information on the USDA’s classification, see:
https://www.nass.usda.gov/Data_and_ Statistics/County_ Data_ Files/Frequently_Asked Questions/index.php#
and https://data.nal.usda.gov/dataset /nass-quick-stats/resource/5f1173c1-bcb4-4£88-aec0-

3bbfee75657f
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Table B1
WNS Detection by State by Year

Year of WNS Confirmed Classification
by Fish and Wildlife Service

State 2006 2007 2008 2009 2010 2011 2012 2013 2014 | Total

AL 0 0 0 0 0 1 0 2 2 5
AR 0 0 0 0 0 0 2 4 6
CT 0 1 1 0 2 0 0 0 0 4
DE 0 0 0 0 0 1 0 0 0 1
GA 0 0 0 0 0 0 3 2 0 5
IL 0 0 0 0 0 0 4 0 8 12
IN 0 0 0 0 3 6 0 0 0 9
IA 0 0 0 0 0 0 0 0 2 2
KY 0 0 0 0 1 2 13 1 1 18
ME 0 0 0 0 1 1 0 0 0 2
MD 0 0 0 1 2 0 0 0 0 3
MA 0 3 0 0 0 0 1 0 0 4
MI 0 0 0 0 0 0 0 ) > 10
MO 0 0 0 0 0 1 3 4 0 8
NH 0 0 2 1 0 0 0 0 0 3
NJ 0 0 2 0 0 0 0 0 0 2
NY 2 7 6 3 0 0 0 0 0 18
NC 0 0 0 0 4 1 2 1 0 8
OH 0 0 0 0 1 5 8 2 0 16
PA 0 0 4 10 3 10 0 0 0 27
SC 0 0 0 0 0 0 1 2 0 3
TN 0 0 0 2 1 8 21 14 4 50
VT 0 3 3 1 0 0 0 0 0 7
VA 0 0 6 3 1 1 1 0 0 12
WV 0 0 1 6 4 1 0 0 0 12
WI 0 0 0 0 0 0 0 1 4 5
Total 2 14 25 27 23 38 57 36 30 ‘ 252

Notes: Each cell reports the number of counties in each state (row) that were
classified as WNS confirmed by the Fish and Wildlife service between 2006 and
2014 (column).
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